If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12v^2+31v+20=0
a = 12; b = 31; c = +20;
Δ = b2-4ac
Δ = 312-4·12·20
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-1}{2*12}=\frac{-32}{24} =-1+1/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+1}{2*12}=\frac{-30}{24} =-1+1/4 $
| 2/5x-27=-5/2x+2 | | 16-2r=2r+1 | | 2(4-y/4)-y=-2 | | 2(3x-2)+7*2=133 | | 0.5t+0.9(40-t)=22.4 | | F(x)=(x-5)2 | | 9q^2-24q+16=0 | | -3x2−12x+15=0 | | x2−6x+5=0 | | 5x57= | | 6x^2+6x-23=0 | | 2x2+14x+24=0 | | 79+x=71 | | 0.5t+.9(40-t)=22.4 | | 16x-6=28x=3 | | 9x+16=10x+5 | | 2x+58=642 | | -2(y-8)=4y-38 | | 2x+2/9=3x+7/9 | | 1/3(6x-15)=4x-19 | | 1/4m=9=-16 | | 0.5t+0.9(40-t=40 | | -3y+24=-6(y+1) | | 0.8n+0.6n=42 | | 12.88-0.88(x+0.50)=0.25x=2(x-3.17) | | 8y+1/4=9y+7/4 | | 13x-6=4+13 | | 0.05t+0.08(100-t)=6.8 | | -9(2b+2)+(19b+3)=0 | | 6x+4x=9x+4 | | -2(y-6)=7y+48 | | 8(x+9)-(2x-7)=5x |